

HPC/HTC vs. Cloud Benchmarking An empirical evaluation of the performance and cost metrics

Kashif Iqbal - PhD Kashif.iqbal@ichec.ie

ICHEC, NUI Galway, Ireland

With acknowledgment to Michele Michelotto – INFN for their kind support for the HTC Benchmarking + Resources

ICHEC - in a nutshell

- Irish Centre for High-End Computing
 - National Tier-1 Centre
 - Run Irish National HPC service for Academics
 - PRACE partner
- Interest in understanding the competitive costs
 - Understanding various infrastructures & workloads
 - HPC, HTC, HPC Cloud, HTC Cloud
- What is the most effective means to address our customers (Academics) needs?

Outline

- Benchmarking Why, which benchmark?
- HPC and HTC Benchmarking
 - Benchmarks (NPB, HEPSPEC06)
 - Environment Setup
 - Results
- Next Steps

MOTIVATION

If there is a better reason to paddle, I don't know what it is.

Overview

- Diversity
 - Diverse computing infrastructures (HPC. HTC, Cloud)
 - Diverse workloads for various academic communities

- Cost analysis and performance metrics
 - Performance and configuration overhead as indirect costs

- System benchmarking for:
 - Comparison of HPC and HTC systems vs. Cloud offerings
 - Comparison of parallelism techniques (e.g. MPI/OMP)

HPC/HTC Benchmarks

- LINPACK Top 500
- SPEC06 CPU intensive benchmark
 - HEP-SPEC06
- HPC Challenge (HPCC)
- Graph 500
- STREAM for memory bandwidth
- MPPtest MPI performance
- NAS Parallel Benchmark (NPB)
- •

NAS Parallel Benchmark

- Open-source and free CFD benchmark
- Performance evaluation of commonly used parallelism techniques
 - Serial, MPI, OpenMP, OpenMP+MPI, Java, HPF
- Customisable for different problem sizes
 - Classes S: small for quick tests
 - Class W: workstation size
 - Classes A, B, C: standard test problems
 - Classes D, E, F: large test problems

NPB Kernels

Kernel	Description	Problem Size	Memory (MW)
EP	Monte Carlo kernel to compute the solution of an integral – Embarrassingly parallel	2 ³⁰	18
MG	Multi-grid kernel to compute the solution of the 3D Poisson equation	256 ³	59
CG	Kernel to compute the smallest eigenvalue of a symmetric positive definite matrix	75000	97
FT	Kernel to solve a 3D partial difference equation using an FFT based method	512x256x256	162
IS	Parallel sort kernel based on bucket sort	2 ²⁵	114
LU	Computational Fluid Dynamics (CFD) application using symmetric successive over relaxation	102 ³	122
SP	CFD application using the Beam-Warming approximate factorisation method	102 ³	22
ВТ	CFD application using an implicit solution method HPC/HTC vs. Cloud Benchmarking – eFiscal Workshop @ EGI TF 2012, Prague	102 ³	96

Cloud Cluster Setup

- EC2 instance management
 - StarCluster Toolkit
 - http://web.mit.edu/star/cluster/
 - StarCluster AMIs Amazon Machine Image
 - Resource manager plugin
- Login vs. compute instances
 - EC2 small instance as login node
 - File system shared via NFS across nodes

Cloud vs. HPC

	Amazon EC2	Stokes HPC
Compute Node	23 GB of memory, 2 x Intel Xeon X5570, quad-core "Nehalem" (8 cores X 4 Nodes)	24 GB memory, 2 x Intel Xeon E5650, hex-core "Westmere" (12 cores X 3 Nodes)
Connectivity	10 Gigabit Ethernet	ConnectX Infiniband (DDR)
os	Ubuntu, 64-bit platform	Open-SUSE, 64-bit platform
Resource manager	Sun Grid Engine	Torque
Compilers & libraries	Intel C, Intel Fortran, Intel MKL, Intel MVAPICH2	Intel C, Intel Fortran, Intel MKL, Intel MVAPICH2

- Non-trivial to replicate runtime environments
- Large variations in performance possible
- Logical vs. Physical cores
 - HT/SMT Hyper or Simultaneous Multi-Threading (i.e. 2 X Physical Cores)

NPB – MPI

The average performance loss ~ **48.42**% (ranging from 1.02% to 67.76%).

HPC/HTC vs. Cloud Benchmarking – eFiscal Workshop @ EGI TF 2012, Prague

NPB - OpenMP

8 cores with 8 OMP Threads (22 runs)

The average performance loss ~ **37.26**% (ranging from 16.18 - 58.93%

HPC/HTC vs. Cloud Benchmarking – eFiscal Workshop @ EGI TF 2012, Prague

Cost

- 720 hours @ 99.29 USD ©
 - ~100 % utilisation
 - Compute cluster instance @ \$1.300 per Hour
 - Small instance @ \$0.080 per Hour
- Other useful insights:
 - Spot instances
 - Overheads (performance, I/O, setup)
 - Data transfer costs and time

HEPSPEC Benchmark

- HEP Benchmark to measure CPU performance
 - Based on all_cpp bset of SPEC CPU2006
 - Fair distribution of SPECint and SPECfp
 - Real workload

- 32-bit binaries
 - Can be compiled using 64-bit mode ~ for better results

Benchmark Environment

	Amazon EC2	HTC resource at INFN
Compute Nodes	Medium: 2 ECU Large: 4 ECU Xlarge: 8 ECU 1 ECU = 1.0-1.2 GHz	Intel(R) Xeon(R) CPU E5-2660 @ 2.2 GHz, 2 X 8 cores AMD Opteron 6272 (aka Interlagos) @ 2.1 GHz, 2 X 16 cores M instance Single-core VM L instance Dual-core VM XL Instance Quad-core VM
OS	SL6.2, 64-bit platform	SL6.2, 64-bit platform
Memory	3.75 GB, 7.5 GB and 15 GB	64 GB for both Intel and AMD
Hyper-Threading	Enabled	Enabled (for Intel) ~ 32 logical cores
Compilers	GCC	GCC

HS06 for Medium

Bare Metal – no virtualisation 1 VM + idle N VMs + minimal load N VMs + Fully loaded

SPEC score < with the > no. of VMs

Bare Metal – NO!!!!!

1 VM + idle – UNLIKELY!

N VMs + minimal load – Possible
but Unknown!

N VMs + Fully loaded – Possible
but Unknown!

- Virtualisation + Multi-Tenancy (MT) effect on performance ~
 3.28% to 58.48%
- More realistic figure ~ 11.53 to 58.48

HS06 for Large

Bare Metal – no virtualisation 1 VM + idle N VMs + minimal load N VMs + Fully loaded

Bare Metal – NO!!!!!

1 VM + idle – UNLIKELY!

N VMs + minimal load – Possible but Unknown!

N VMs + Fully loaded – Possible but Unknown!

- Virtualisation + MT effect on performance ~ 9.49% to 57.47%
- Note the minimal effect of > no. of VMs

HS06 for Xlarge

Bare Metal – no virtualisation 1 VM + idle N VMs + minimal load N VMs + Fully loaded

Bare Metal – NO!!!!!

1 VM + idle – UNLIKELY!

N VMs + minimal load – Possible
but Unknown!

N VMs + Fully loaded – Possible
but Unknown!

- Virtualisation + MT effect on performance ~ 8.14% to 55.84%
- Note the minimal effect of > no. of VMs

HS06 for Medium

Bare Metal – no virtualisation 1 VM + idle N VMs + minimal load N VMs + Fully loaded

Bare Metal – NO!!!!!

1 VM + idle – UNLIKELY!

N VMs + minimal load – Possible
but Unknown!

N VMs + Fully loaded – Possible
but Unknown!

Virtualisation + MT effect on performance ~ 3.77% to 47.89%

HS06 for Large

Bare Metal – no virtualisation 1 VM + idle N VMs + minimal load N VMs + Fully loaded

Bare Metal – NO!!!!!

1 VM + idle – UNLIKELY!

N VMs + minimal load – Possible
but Unknown!

N VMs + Fully loaded – Possible
but Unknown!

Virtualisation + MT effect on performance ~ 9.04% to 48.88%

Conclusions - HPC

- As expected a purpose built HPC cluster outperforms
 EC2 cluster for same number of OMP threads
 - Average performance loss over all NPB tests: ~37%

- Similarly so for when comparing 10GigE versus Infiniband networking fabrics
 - Average performance loss over all NPB test: ~48%
- Even at a modest problem size the differences in performances between systems is highlighted.

Conclusions - HTC

- Virtualisation overhead is much less than the Multi-Tenancy effect
 - What others are running will have a direct effect!

- Standard deviation with pre-launched VMs in EC2 is significantly low!
 - Hypothesis: Variations will possibly be there!

HS06 Scores variations on the order of 40-48%

Next steps

- HTC vs. Cloud Benchmarking
 - Cluster Compute and High-CPU Instances
 - Study pre-launch vs. new VM in EC2

- Benchmarking results in the cost model
 - As an extra weight in addition to monetary costs

Publications

Thank you for your attention!

Questions??

kashif.iqbal@ichec.ie