

HPC vs. Cloud Benchmarking An empirical evaluation of the performance and cost metrics

Kashif Iqbal* and Eoin Brazil Kashif.iqbal@ichec.ie ICHEC, NUI Galway, Ireland

ICHEC - in a nutshell

- Irish Centre for High-End Computing
 - National Tier-1 Centre
 - Run Irish National HPC service for Academics
 - PRACE partner
- Interest in understanding the competitive costs
 - Understanding various infrastructures & workloads
 - HPC, HTC, HPC Cloud, HTC Cloud
- What is the most effective means to address our customers (Academics) needs?

Outline

- Benchmarking Why, which benchmark?
- NAS Parallel Benchmark (NPB)
- Environment Setup
- Results
- Next Steps

Sitting in a 3.8-metre sea kayak and watching a four-metre great white approach you is a fairly tense experience

MOTIVATION

If there is a better reason to paddle, I don't know what it is.

Overview

- Diversity
 - Diverse computing infrastructures (HPC. HTC, Cloud)
 - Diverse workloads for various academic communities
- Cost analysis and performance metrics
 - Performance and configuration overhead as indirect costs
- System benchmarking for:
 - Comparison of HPC and HTC systems vs. Cloud offerings
 - Comparison of parallelism techniques (e.g. MPI/OMP)

HPC/HTC Benchmarks

- LINPACK Top 500
- SPEC06 CPU intensive benchmark
 HEP-SPEC06
- HPC Challenge (HPCC)
- Graph 500
- STREAM for memory bandwidth
- MPPtest MPI performance
- NAS Parallel Benchmark (NPB)

NAS Parallel Benchmark

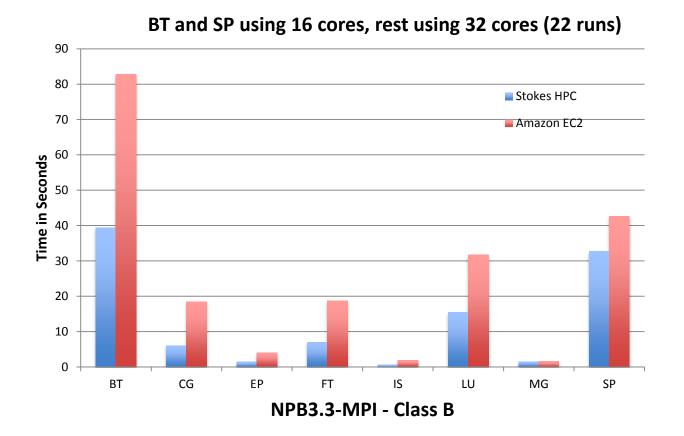
- Open-source and free CFD benchmark
- Performance evaluation of commonly used parallelism techniques
 - Serial, MPI, OpenMP, OpenMP+MPI, Java, HPF
- Customisable for different problem sizes
 - Classes S: small for quick tests
 - Class W: workstation size
 - Classes A, B, C: standard test problems
 - Classes D, E, F: large test problems

NPB Kernels

Kernel	Description	Problem Size	Memory (MW)
EP	Monte Carlo kernel to compute the solution of an integral – Embarrassingly parallel	2 ³⁰	18
MG	Multi-grid kernel to compute the solution of the 3D Poisson equation	256 ³	59
CG	Kernel to compute the smallest eigenvalue of a symmetric positive definite matrix	75000	97
FT	Kernel to solve a 3D partial difference equation using an FFT based method	512x256x256	162
IS	Parallel sort kernel based on bucket sort	2 ²⁵	114
LU	Computational Fluid Dynamics (CFD) application using symmetric successive over relaxation	102 ³	122
SP	CFD application using the Beam-Warming approximate factorisation method	102 ³	22
BT	CFD application Using an implicit solution mit 2012 eFISCAL Workshop	102 ³	96 8

Cloud Cluster Setup

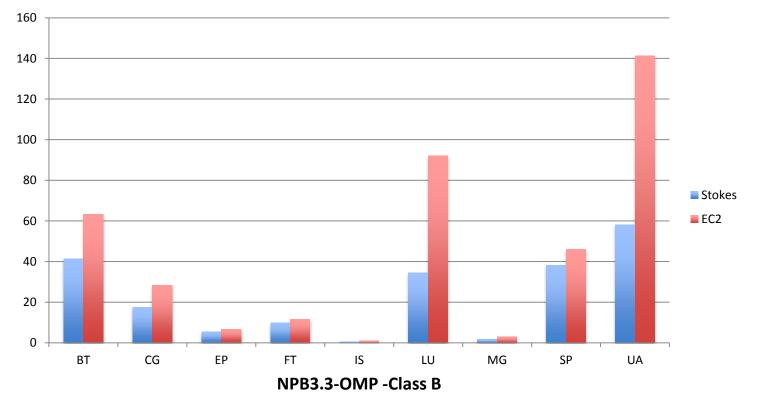
- EC2 instance management
 - StarCluster Toolkit
 - http://web.mit.edu/star/cluster/
 - StarCluster AMIs Amazon Machine Image
 - Resource manager plugin
- Login vs. compute instances
 - EC2 small instance as login node
 - File system shared via NFS across nodes


	Amazon EC2	Stokes HPC
Compute Node	23 GB of memory, 2 x Intel Xeon X5570, quad-core "Nehalem"	24 GB memory, 2 x Intel Xeon E5650, hex-core "Westmere"
Connectivity	10 Gigabit Ethernet	ConnectX Infiniband (DDR)
OS	Ubuntu, 64-bit platform	Open-SUSE, 64-bit platform
Resource manager	Sun Grid Engine	Torque
Compilers & libraries	Intel C, Intel Fortran, Intel MKL, Intel MVAPICH2	Intel C, Intel Fortran, Intel MKL, Intel MVAPICH2

- Non-trivial to replicate runtime environments
- Large variations in performance possible
- Logical vs. Physical cores

HT/SMT – Hyper or Simultaneous Multi-Threading

NPB – MPI



The average performance loss was **48.42**% (ranging from 1.02% to 67.76%).

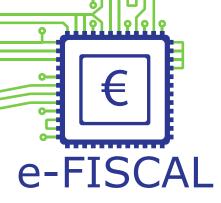
NPB - OpenMP

The average performance loss was **37.26**% (ranging from 16.18 - 58.93%

- 720 hours @ 99.29 USD 🙂
 - ~100 % utlisation
 - Compute cluster instance @ \$1.300 per Hour
 - Small instance @ \$0.080 per Hour
- Other useful insights:
 - Spot instances
 - Overheads (performance, I/O, setup)
 - Data transfer costs and time

Conclusions

- As expected a purpose built HPC cluster outperforms EC2 cluster for same number of OMP threads
 - Average performance loss over all NPB tests: ~37%
- Similarly so for when comparing 10GigE versus Infiniband networking fabrics
 - Average performance loss over all NPB test: ~48%
- Even at a modest problem size the differences in performances between systems is highlighted.


Next steps

- HTC vs. Cloud Benchmarking
 - HEP-SPEC on the virtualised EGI resources
 - and EC2 instances (small, medium, large)

- As an extra weight in addition to monetary costs
- Publications

Thank you for your attention!

Questions?? kashif.iqbal@ichec.ie